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Abstract
The Ising quantum chain with arbitrary coupling distribution {λi} leading to an
anisotropic scaling is considered. The smallest gap of the chain is connected
to the surface magnetization by the relation �1 = ms({λi})ms

({
λ−1

i

})
. For

some aperiodic distribution {λi}, a weak universality of the critical behaviour
is found.

PACS numbers: 05.30.−d, 05.50.+q, 05.70.Jk

Quenched disorder has a profound impact on the nature of quantum phase transitions. In
one-dimensional random magnets, the disorder leads to an extremely broad distribution of
energy scales in the vicinity of the critical point [1]. Based on this remarkable property,
Fisher has obtained exact results on the random transverse-field Ising quantum chain (RITF)
using a direct space renormalization-group transformation [2]. A similar type of unbounded
fluctuations appears in deterministic chains where the couplings follow an aperiodic sequence
[3–6]. Such aperiodic systems scale essentially anisotropically in a similar fashion [7] as
the random case where the length and time scales are related as L ∼ (ln t)1/ω implying an
infinite anisotropy exponent z, since by the definition of z, t ∼ Lz. In the random case,
outside the critical point in the so-called Griffiths phase [8], the anisotropy exponent of the
RITF is finite and depends on the quantum control parameter [2]. The same strong anisotropy
was observed [9] in the marginal aperiodic ITF at criticality, for logarithmically diverging
fluctuations induced by the aperiodical modulation of the couplings. We show in this letter
how the anisotropy exponent can be derived in general for chains with arbitrary coupling
distributions that lead to an anisotropic scaling. In the marginal aperiodic case, we recover an
explicit relation and we show that a weak universality emerges for some aperiodic distributions.

The Ising quantum chain in a transverse field is defined by the Hamiltonian:

H = −1

2

L−1∑
i=1

Jiσ
x
i σ x

i+1 − 1

2

L∑
i=1

hiσ
z
i , (1)
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where σ ’s are the Pauli spin operators and Ji, hi are the inhomogeneous couplings. In marginal
aperiodic systems, for which hi = h and λi = λRfi with λi = Ji/hi and fi = 0, 1 generating
the aperiodicity, an anisotropic scaling was found [9, 10]. For such systems, the smallest
excitations of the Hamiltonian scale at the bulk critical point as � ∼ L−z with the size L of the
chain. In the marginal aperiodic case, Berche [9, 10] showed numerically that the anisotropy
exponent z is continuously varying with the control parameter R and conjectured the relation
z(R) � 1, where

z(R) = xms
(R) + xms

(R−1), (2)

where xms
(R) is the magnetic exponent associated with ms = 〈

σx
1

〉
.1 The observed symmetry

in the exchange R ↔ 1/R in (2) was demonstrated in [11] for aperiodic systems generated by
inflation rules, using a generalization of an exact renormalization-group method introduced
first in [12] and applied to several aperiodic systems in [13]. We show here that this equation
comes from a relation, valid for any distribution of couplings leading to anisotropic scaling,
that relies on the first gap �1 to the surface magnetization.

Using a Jordan–Wigner transformation [14], the Hamiltonian (1) can be rewritten in a
quadratic form in fermion operators. It is then diagonalized by a canonical transformation and
reads

H =
L∑

q=1

�q

(
η†

qηq − 1

2

)
, (3)

where η†
q and ηq are the fermionic creation and annihilation operators. The one fermion

excitations �q satisfy the following set of equations:

�q�q(i) = −hi�q(i) − Ji�q(i + 1)

�q�q(i) = −Ji−1�q(i − 1) − hi�q(i)
(4)

with the free boundary condition J0 = JL = 0. The vectors � and � are related to
the coefficients of the canonical transformation and enter into the expressions of physical
quantities. For example, the surface magnetization, ms = 〈

σx
1

〉
, is simply given by the first

component of �1 associated with the smallest excitation of the chain, �1.
Let us consider now a distribution of the couplings which leads to anisotropic scaling with

a dynamical exponent z > 1, as it is the case for bulk marginal aperiodic modulation of the
couplings [9–13]. Then, the bottom spectrum of the critical Hamiltonian scales as �q ∼ L−z

in a finite size system. According to [13], the asymptotic size dependence of �1(L) is given
by the expressions

�1(L) � (−1)L
�1(1)

�1(L)

L−1∏
i=1

λ−1
i


1 +

L−1∑
i=1

i∏
j=1

λ−2
L−j




−1

(5)

�1(L) � (−1)L
�1(L)

�1(1)

L−1∏
i=1

λ−1
i


1 +

L−1∑
i=1

i∏
j=1

λ−2
j




−1

, (6)

which are valid at the critical point and in the ordered phase. Noting in (5) that

L−1∏
i=1

λ−1
i


1 +

L−1∑
i=1

i∏
j=1

λ−2
L−j




−1

=
L−1∏
i=1

λi


1 +

L−1∑
i=1

i∏
j=1

λ2
j




−1

, (7)

1 One may note that relation (2) holds for the homogeneous system, R = 1, with xms = 1/2 and z = 1.
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equation (5) becomes

�1(L) � (−1)L
�1(1)

�1(L)

L−1∏
i=1

λi


1 +

L−1∑
i=1

i∏
j=1

λ2
j




−1

. (8)

Now multiplying both sides of equation (8) with (6) leads to

�1(L) �

1 +

L−1∑
i=1

i∏
j=1

λ−2
j




−1/2 
1 +

L−1∑
i=1

i∏
j=1

λ2
j




−1/2

(9)

which is symmetric under the exchange λ ↔ 1/λ. One recognizes in this expression the
surface magnetization [15] ms(L, {λi}) = [

1 +
∑L−1

i=1

∏i
j=1 λ−2

j

]−1/2
of the quantum chain, so

that one finally obtains

�1(L) � ms(L, {λi})ms

(
L,

{
λ−1

i

})
. (10)

This relation connects a bulk quantity, �1, with surface quantities, namely ms(L, {λi}) and
the surface magnetization of the dual chain, ms

(
L,

{
λ−1

i

})
.

Consider now a deterministic distribution of the chain couplings, {λi}, with hi = h and
λi = JRfi /h with fi following some sequence of 0 and 1. The critical coupling λc follows
from the relation limL→∞

∏L
k=1(Jk/hk)

1/L = 1 [16] and gives λc = R−ρ∞ with ρ∞ the
asymptotic density of modified couplings λR. The modulation of the couplings introduces a
perturbation which can be either relevant, marginal or irrelevant. For the Ising quantum chain,
the fluctuations around the average coupling λ̄ at a length scale L

	(L) =
L∑

k=1

(λk − λ̄) ∼ Lω (11)

govern the relevance of the perturbation [5, 6]. ω is a wandering exponent depending on the
distribution of couplings. If ω < 0, the fluctuations are bounded and the system is in the
Onsager universality class. On the other hand for ω > 0, the fluctuations are unbounded and
one has to distinguish two different situations. The evaluation of the surface magnetization
is related to the sum

∑L
j=1 λ−2jR−2nj , where nj is the number of modified couplings, λR, at

size j . At the critical point, using (12) the sum can be rewritten asymptotically as
∑L

j=1 R−2Bjω

.
Now assume that the coefficient B is positive (if not the roles of R > 1 and R < 1 are reversed
in the following discussion). For R > 1, the previous sum is absolutely convergent for
L → ∞ and leads to a finite surface magnetization with exponentially small corrections in a
finite size system. On the other hand for R < 1, the sum is diverging exponentially and the
surface magnetization is governed by the dominant term exp(−2B ln RLω), so that

ms(L,R) ∼ exp(−A(R)Lω), (12)

with A(R) > 0. So from equation (11), in both cases (R > 1 or R < 1) the first gap �1 will
show an essential singularity corresponding to z = ∞:

�1(R,L) ∼ exp(−Ã(R)Lω), (13)

with Ã(R) = A(R) for R < 1 and Ã(R) = A(1/R) for R > 1 since from (10)
�1(R) = �1(1/R).

In the marginal case, corresponding to ω = 0 and a logarithmic divergence of the
fluctuations, nj � ρ∞j + C ln j where C is some constant, it can be shown that the surface
magnetization scales at the critical point as

ms(L, {λi}c) ∼ L−xms (R) (14)
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Figure 1. Rescaled magnetization profiles of the period-doubling chain with r = 5. The inset
gives the corresponding magnetization profile.

with an exponent xms
(R) varying continuously with the control parameter R. In fact,

the sum can be evaluated at the critical point using nj � ρ∞j + C ln j . One obtains∑L
j=1 λ

−2j
c R−2nj � ∑L

j=1 R−2C ln j ∼ ∫ L dx x−2C ln R ∼ L1−2C ln R . This expression is only
valid in the weak perturbation regime for R � 1, that is in first order in ln R. For a stronger
regime, one has to retain higher terms in the nj expression. At this order, the surface magnetic
exponent is xms

(R) � 1/2 − C ln R. One can remark that for a sequence like the period-
doubling one [9, 10], xms

(R) = xms
(1/R) which implies C = 0 and then the former calculation

gives xms
(R) = 1/2 + O(ln2 R). Finally, from (10) and (14) one obtains relation (2). The

anisotropy exponent z is then given by one surface magnetic exponent xms
which is a function

of the perturbation strength. The symmetry R ↔ 1/R of z is due to the self-duality of the
Ising quantum chain which implies for all bulk quantities the relation Q({λi}) = Q

({
λ−1

i

})
.

For a symmetric distribution of couplings with respect to the centre of the chain, leading to
xms

(R) = xms
(1/R) (see the period-doubling case [9, 10]), one observes a weak universality.

Indeed, the bottom of the spectrum scales anisotropically as � ∼ L−z ∼ ξ−z
⊥ ∼ t zν where t

measures the deviation from the critical point and ν = 1 is the exponent of the longitudinal
correlation length ξ⊥. So that from (10)

ms(t) ∼ (tz)1/2. (15)

From anisotropic scaling, one obtains for the critical dimension of the surface energy density
es the scaling relation xes

= z + 2xms
[10]. Using the symmetry of xms

, one has z = 2xms
and

then

es ∼ (tz)2. (16)

We see that we recover the homogeneous surface exponents xms
= 1/2, xes

= 2 when the
deviation from the critical point is measured by t z ∼ �1.

The same weak universality seems to hold for the bulk quantities. In fact, it was shown
in [10] that the bulk energy density scales as e ∼ L−z for marginal aperiodic modulation of
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the couplings. So again the pure energy density exponent xe = 1 is recovered. Here, we
have investigated the behaviour of the mean bulk magnetization mb = 1/L

∑
i m(i) for the

period-doubling sequence using finite size scaling analysis. The magnetization is evaluated at
the bulk critical point for sizes up to L = 1024. Numerically, the profiles are well rescaled on
the same mean curve with an exponent xmb

(R) = z(R)/8, confirming the weak universality
scenario. One may mention that as the size increases the profiles are more and more decorated
with a growing fluctuation amplitude. This suggests that the finite size behaviour of the mean
critical magnetization is given by

mb ∼ L−z/8 ∼ (L−z)1/8. (17)

On the basis of the numerical data, the magnetization profile is compatible with the form

m(l, L) = L−z/8 |sin(πl/L)|xms −xmb [A + G(l/L)], (18)

where A is a constant and G(x) is a kind of fractal Weierstrass function with zero mean
value whose Fourier momentum is given by the period-doubling cascade. The sine term is
very general for the profiles of the Ising quantum chains and is related to the geometry of
the system. This can be demonstrated explicitly for the pure case [17] and was numerically
obtained for random Ising systems [18]. The only difference here is that we have not only a
pure constant in the front of it but in addition a fractal function of zero mean which controls
the local fluctuations, due to the aperiodic distribution, around some average environment.

In conclusion, the weak universality observed in these systems implies that the knowledge
of the anisotropy exponent z, together with the universality class of the pure fixed point, is
sufficient to determine the critical behaviour of the system, that is only one new exponent is
needed.
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[7] Iglói F, Karevski D and Rieger H 1998 Eur. Phys. J. B 1 513
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